<button id="e2s44"></button><button id="e2s44"><object id="e2s44"></object></button>
  • <li id="e2s44"><acronym id="e2s44"></acronym></li>

    <tbody id="e2s44"><pre id="e2s44"></pre></tbody>
    <button id="e2s44"><object id="e2s44"></object></button>
  • 首页 >> 研究方法 >>植物效率分析儀 >> JIP-test和主成分分析(PCA)在植物光合作用研究中的應用
    详细内容

    JIP-test和主成分分析(PCA)在植物光合作用研究中的應用

    歡迎關注「漢莎科技集團」微信公眾號!

    1.快速葉綠素熒光誘導動力學分析(JIP-test)

    近二十年來,基于“生物膜能量通量理論”的活體快速葉綠素 a 熒光誘導動力學OJIP曲線和JIP-test分析,由于其無損、精確、快速等特性,已被廣泛而成功地用做研究植物生理狀態的有力工具(Strasser et al.,1995, 2004)。植物快速葉綠素熒光誘導曲線(OJIP曲線)中包含著大量關于PSⅡ反應中心原初光化學反應的信息,植物在不同脅迫處理后OJIP曲線會發生特異性變化(Strasser et al., 2004)。
    OJIP曲線對不同的環境變化極為敏感,例如光脅迫、化學物質影響、熱脅迫、低溫或凍害、干旱脅迫、重金屬或鹽脅迫、營養不良、大氣CO2或臭氧升高和病害。通過對曲線熒光參數的分析,可以知道在環境因子影響下植物光合機構的變化。
    表1.JIP-test在各種植物脅迫研究中的舉例
    image.png
    • 不同環境脅迫JIP-test應用文獻目錄請移步至“漢莎科技集團”微信公眾號底部“技術支持” → “文獻目錄”  “植物效率”

    從動力學曲線上可以得到大量的原始數據,為了能更好地反映動力學曲線和被測樣品的關系,Strasser RJ(1995)以生物膜能量流動為基礎,通過計算能量流和能量比率來衡量在給定物理狀態下樣品材料內部變化,建立了高度簡化的能量流動模型圖。

    image.png

    圖1. 高度簡化的能量在光合器官中的流動模型圖(Strasser BJ, Strasser RJ, 1995)

    依照能量流動模型,天線色素(Chl)吸收的能量(Absorption, ABS)的一部分以熱能和熒光(F)的形式耗散掉,另一部分則被反應中心(Reaction Centre, RC,在JIP-test中RC指有活性的反應中心)所捕獲(Trapping, TR),在反應中心激發能被轉化為還原能,將QA還原為QA-,后者又可以被重新氧化,從而產生電子傳遞(electron transport,ET),把傳遞的電子用于固定CO2或其它途徑。

    在此基礎上發展起來的數據處理稱為“JIP-test”(Strasser etal. 1995; Krüger et al. 1997; Strasser et al. 2000, 2004)。JIP-test為我們提供了被測樣品的大量信息,如光合器官在不同環境條件下的結構和功能的變化(Strivastava & Strasser1996; Jiang et al. 2003; Hermans et al. 2003; van Heerden et al. 2003, 2004)。

    image.png

    圖2. 葉綠素熒光相關聯合作者網絡(注意R.Strasser和R.J.Strasser是同一個人)。從黃色到紅色,協作性更強,中心性更高(K. HU et al, 2020)
    學術界對JIP-test方法的研究和應用熱度在不斷增加,而對脈沖調制式(PAM)方法的興趣在逐漸減弱。這是什么意思?乍一看,一個可能的解釋是源于對OJIP動力學實驗測量可用性的增加,主要是因為:1)研究者有新的熒光檢測方法可用,2)JIP-test已明顯證明是基于半經驗合理假設的穩健分析工具(robust analysis tool based on semi-empiricalreasonable assumptions)。

    image.png

    圖3:Strasser教授和Hansatech初代PEA植物效率分析儀(Rodriguez, 2000年)

    由Reto J.Strasser教授發明授權英國Hansatech公司生產的PEA植物效率分析儀系列產品(Handy PEA、M-PEA...)是目前世界上可以完美真實測定OJIP曲線的成熟商品化設備。近20年來,JIP-test方法的不斷發展及其在野外應用和實驗室研究中的應用呈現出顯著的增長趨勢。
    近期發表文章《能量流理論慶祝40年:走向系統生物學概念?》(The energy flux theory celebrates 40 years: toward a systems biology concept?" Photosynthetica, April 2019, 57(2):521-522.)詳細闡述了這一研究熱點趨勢。
    2019年末國際光合作用研究雜志(Photosynthetica)推出榮耀特刊,刊發30余篇榮耀文章以表彰紀念Strasser教授在JIP-test理論方向做出的卓越貢獻。

    image.png

    榮耀特刊文獻預覽及下載請點擊以下鏈接文章:

    2.主成分分析(PCA)簡介

    主成分分析(Principal Components Analysis)也稱主分量分析,旨在利用“降維”的思想,把多指標轉化為少數幾個綜合指標。在許多研究領域中,通常需要對含有多個變量的數據進行觀測,收集大量數據后進行分析尋找規律。多變量大數據集為研究提供了豐富的信息,而在多數情況下,許多變量之間可能存在相關性,從而增加了問題分析的復雜性。
    如果分別對每個指標進行分析,分析往往是孤立的,不能完全利用數據中的信息,因此盲目減少指標會損失很多有用的信息,從而產生錯誤的結論。鑒于各變量之間存在一定的相關關系,因此可以考慮將關系緊密的變量變成盡可能少的新變量,使這些新變量是兩兩不相關的,那么就可以用較少的綜合指標分別代表存在于各個變量中的各類信息。
    主成分分析PCA就屬于這類降維算法,將高維度的數據保留下最重要的一些特征,去除噪聲和不重要的特征,從而實現提升數據處理速度的目的。

    在這里插入圖片描述

    圖4a. 數據點降維的信息損失與矯正:X軸投影

    如何降維?我們以最簡單的二維轉一維為例,如圖4中就是把二維平面上不同位置上的點投影到同一條直線上(X軸或Y軸)。但是仔細觀察前兩個圖,我們就會發現,有些點在投影過后,位置是重合的,也就是說,存在不同的點在壓縮過后表示的信息是完全一樣的,投影到x軸,有兩個點重合,投影到y軸,有三個點重合。

    在這里插入圖片描述

    圖4b. 數據點降維的信息損失與矯正:Y軸投影

    這就是當所有點集中至一條軸上時,另一維度或另一軸上的信息就會丟失,這是不可逆的過程,這一信息的損失也是必然的。這不是我們想要的結果,最終我們還是希望點與點之間間隔盡可能的遠,保留的信息盡可能的多,讓所有的點能夠盡可能的進行區分。

    在這里插入圖片描述

    圖4c. 數據點降維的信息損失與矯正:X/Y軸矯正

    最好的結果應該是我們依然選擇了某個直線,并把點投影到這條直線上,但是點之間沒有重合,點與點的間隔也比較遠。看到這里,我們就知道PCA到底要做什么了,沒錯,就是找到這條直線,并求出投影到這條直線的點的坐標(當然二維降一維是直線,三維降二維就是平面了,更多維度也是類似的)。

    3.主成分分析在JIP-test中的應用

    主成分分析(PCA)是深度分析JIP-test眾多熒光參數的有效方法。通過PCA對JIP-test熒光參數進行二次處理,對其數量、精度和復雜性進行分析,可以識別熒光參數大數據中內的隱藏信息,而傳統方法則是無法有效進行的(Samborska et al.2014)。
    使用PEA系列植物效率分析儀,每個樣品僅需2秒鐘,即可獲得完整OJIP曲線和50多個熒光參數,包括(i)OJIP曲線特征位點FJ、FI、Area等,(ii)比活性參數ABS/RC、TRM/RC等,(iii)性能指數PIABS、PItotal等和(iiiii)推動力DFABS等。
    JIP-test每個熒光參數并不是完全獨立的,因為JIP-test熒光參數是根據熒光瞬態曲線點計算的,其中一些參數由于其數學表達式(如φDo和φPo)而具有很高的相關性。
    通過主成分分析PCA評估植物在不同環境下的生理或脅迫效應,以確定對植物光合生理反應最敏感的參數,這種方法允許將一組測量參數轉換成較少的變量,以確定植物生理狀態的變化(Jolliffe,2002; Legendre and Legendre 2012; Goltsev etal. 2012)。       

    image.png

           圖5:羽狀短柄草(Brachypodium pinnatum)不同林分密度對54個JIP-test熒光參數的PCA分析(Baba,未發表)

    如圖5中JIP-test熒光數據來自于不同生長年齡短柄草(隨著生長年齡的增大,其林分密度隨之增大)。首先第一PCA軸(Dim1)向上,兩個極值分別為:VI和單位PS活性反應中心比通量參數(TRo/RC、ETo/RC、REo/RC)。

    同時第二PCA軸(Dim2)向上,可以看到參數Fv/Fo和PSⅡ原初最大量子產率(ΦPo)的增大。

    通過這種方法,我們發現了四個最重要的參數(而不是最初的54個)來描述光合機構的狀態,它們與短柄草的林分密度的增加顯著相關。

    image.png

    圖6. 缺肥條件下玉米葉片JIP-test參數變異性的主成分分析(Kalaji,2014)

    圖6中對不同施肥處理的玉米JIP-test熒光數據進行PCA分析,使其分為了5個分離簇。第一類為對照組和缺磷植株。此簇位于Comp1和Comp2均為正值的第一象限,結果表明與對照組相比,缺磷處理對玉米光合機構的影響不顯著。
    第二類是均勻分布在坐標系原點附近的缺氮、缺鎂和缺硫樣品。缺氮、缺硫植株的參數點略有向正方向移動,缺鎂植株的參數點向負方向移動。這意味著盡管JIP-test熒光參數變化具有相似性,但仍有足夠的特征可用作區分組內樣本的熒光表型標記。
    第三類主要由植物缺鉀樣品組成,位于Comp1和Comp2的負區。這意味著玉米中鉀的缺乏可以通過JIP-test來很容易地確定。第四和第五個簇是由缺鐵和缺鈣植株形成的,即當玉米缺鐵或缺鈣時,具有相似的JIP-test參數,并且它們與其他缺肥處理有很好的分離。

    image.png

    圖7. 不同環境條件下5個玉米雜交種葉片JIP試驗參數變異性的主成分分析:對照(C)、弱光(LL)、田間(F)、冷(Co)、熱(H)和高溫(SH)(Frani M et al. 2020)

    圖7為不同環境條件下5個玉米雜交種葉片JIP試驗參數變異性的主成分分析:前三主成分占總方差的95.9%,選擇的14個參數對環境效應的敏感性不同,因而對主成分形成的貢獻也不同(數據見原文)。

    所有五種處理都是獨立的簇,并位于坐標系的不同區域。SH處理對玉米植株的熱脅迫最為分散,通過JIP-test熒光參數的變化可以看出熱脅迫對玉米植株的嚴重性。

    PC1與DIo/RC(0.98)和RC/ABS(–0.96)的相關性最強,因此可以認為PC1是一個功能反應中心的量度,其兩端極值處理組為C和SH。與PC2兩極相關性最強的參數為(VJ,-0.90)和ΨEo(0.87)。

    在第二主成分兩端的是F、Co和LL處理組,其中LL和Co的主要特征參數是VJVI,F處理組的特征是解釋電子傳遞通量的ΨEo和ETo/RC。在最近對幾種植物的環境影響分類的研究中,也顯示了相似的JIP參數分組(Bussotti et al. 2020)。

    此例中PIABS似乎只提供了一個軸向的分類,而其他JIP-test熒光參數可用于檢測各個環境條件下對玉米的特定影響。例如,第一主成分的相對側顯示了玉米植株受到的兩個環境極值:冷脅迫處理組(Co)-主要由VJ和VI參數表征,而高溫脅迫處理組(SH)-主要由K、Mo、REo/RCDIo/RC表征。

    Stirbet(Stirbet et al. 2018)等人也證實了這一點,同時建議設計新參數以表征已知特定條件反應的JIP-test參數。同時Galic等人(Galic et al. 2019)表明,PIABS可以有效地用于熱脅迫環境下的糧食產量選擇。

    image.png

    總的來說通過PCA我們可以分類植物對各種環境因素的不同反應:
    (i)找到特定處理下植物樣品OJIP曲線發生的特異性變化
    (ii)篩選出發生顯著變化的JIP-test熒光參數及其變化特征,可更好對植物樣品光合機構發生的變化(傷害)進行定位分析,如PSⅡ供體側/受體測或PSⅡ活性中心等。
    (iii)我們還可以將JIP-test熒光數據與其他環境數據或生理參數進行聚類結合(Goltsev et al. 2012)。
    (iv)此外Tyystjärvi等人應用PCA等人工智能方法分析不同類型光照(低光強、飽和脈沖、遠紅色等)激發的JIP-test熒光數據,可識別植物物種(Tyystjärvi et al. 1999; Keränen et al. 2003; Codrea et al. 2003;Kirova et al. 2009)。
    (v)Kalaji等人利用JIP-test、主成分分析(PCA)和一種新的機器學習方法建立了一種無創檢測和監測大田條件下油菜籽微量和大量營養素缺乏的方法(Kalaji et al. 2017)。
    鑒于篇幅限制,我們將在下期文章中篩選數篇應用PCA方法分析JIP-test熒光數據具有代表性的文章進行詳細介紹,期待您的關注,謝謝!


    image.png

    4.引用文獻

    [1] Appenroth, K.J., Stöckel, J., Srivastava, A.,Strasser, R.J., 2001. Multiple effects of chromate on the photosyntheticapparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescencemeasurements. Environ. Pollut. 115, 49–64.
    [2] Bussotti F, Gerosa G, Digrado A, Pollastrini M, 2020.Selection of chlorophyll fluorescence parameters as indicators of photosyntheticefficiency in large scale plant ecological studies. Ecol Indic 108: 105686.
    [3] Bussotti, F., Strasser, R.J., Schaub, M., 2007.Photosynthetic behavior of woody species under high ozone exposure probed withthe JIP-test: a review. Environ. Pollut. 147, 430–437.
    [4] Ceppi, M.G., Oukarroum, A., Cicek, N., Strasser,R.J., Schansker, G., 2012. The IP amplitude of the fluorescence rise OJIP issensitive to changes in the photosystem I content of leaves: a study on plantsexposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol.Plant 144, 277–288.
    [5] Chen, S.G., Xu, X.M., Dai, X.B., Yang, C.L., Qiang,S., 2007. Identification of tenuazonic acid as a novel type of naturalphotosystem II inhibitor binding in QB-site of Chlamydomonasreinhardtii. Biochim. Biophys. Acta 1767, 306–318.
    [6] Chen, S.G., Zhou, F.Y., Yin, C.Y., Strasser, R.J.,Qiang, S., Yang, C.L., 2011. Application of fast chlorophyll a fluorescencekinetics to probe action target of 3-acetyl-5-isopropyltetramic acid. Environ.Exp. Bot. 71, 269–279.
    [7] Christen, D., Schönmann, S., Jermini, M., Strasser,R.J., Défago, G., 2007. Characterization and early detection of grapevine (Vitisvinifera) stress responses to esca disease by in situ chlorophyllfluorescence and comparison with drought stress. Environ. Exp. Bot. 60,504–514.
    [8] Clark, A.J., Landolt, W., Bucher, J.B., Strasser,R.J., 2000. Beech (Fagus sylvatica) response to ozone exposure assessedwith a chlorophyll a fluorescence performance index. Environ. Pollut.109, 501–507.
    [9] Codrea C, Aittokallio T, Keränen M et al(2003) Feature learning with a genetic algorithm for fluorescencefingerprinting of plant species. Pattern Recognit Lett 24:2663–2673.
    [10] Demetriou, G., Neonaki, C., Navakoudis, E.,Kotzabasis, K., 2007. Salt stress impact on the molecular structure andfunction of the photosynthetic apparatus—the protective role of polyamines. Biochim.Biophys. Acta 1767, 272–280.
    [11] Frani M, Jambrovi A, Zduni Z, et al. Photosyntheticproperties of maize hybrids under different environmental conditions probed bythe chlorophyll a fluorescence[J]. Maydica, 2020, 64(3):M25.
    [12] Galić V, Mazur M, Šimić D, Zdunić Z, Franić M, 2019.Plant biomass in salt-stressed young maize plants can be modelled with photosyntheticperformance. Photosynthetica 57: 9-19.
    [13] Goltsev V, Zaharieva I, Chernev P et al (2012)Drought-induced modifications of photosynthetic electron transport in intactleaves: analysis and use of neural networks as a tool for a rapid non-invasiveestimation. Biochim Biophys Acta-Bioenerg 1817:1490–1498.
    [14] Gururani, M.A., Venkatesh, J., Ganesan, M.,Strasser, R.J., Han, Y., Kim, J.I., Lee, H.Y., Song, P.S., 2015. In vivoassessment of cold tolerance through chlorophyll-a fluorescence in transgeniczoysiagrass expressing mutant phytochrome A. PLoS One 10, e0127200.
    [15] Hermans C, Smeyers M, Rodriguez RM, Eyletters M,Strasser RJ, Delhaye JP (2003). Quality assessment of urban trees: Acomparative study of physiological characterization, airborne imaging and onsite of fluorescence monitoring by the OJIP-test. J Plant Physiol, 160:81–90.
    [16] Hermans, C., Johnson, G.N., Strasser, R.J.,Verbruggen, N., 2004. Physiological characterisation of magnesium deficiency insugar beet: acclimation to low magnesium differentially affects photosystems Iand II. Planta 220, 344–355.
    [17] Hu, K., Govindjee, G., Tan, J., Xia, Q., Dai, Z. andGuo, Y. Co-author and co-cited reference network analysis for chlorophyllfluorescence research from 1991 to 2018. Photosynthetica, 2020, vol. 58,iss. 1, p. 110-124.
    [18] Jiang CD, Gao HY, Zou Q (2003). Changes of donorand accepter side in photosystem II complex induced by iron deficiency inattached soybean and maize leaves. Photosynthetica, 41: 267–271.
    [19] Jolliffe, I.T., 2002. Graphical representation ofdata using principal components. In: Jolliffe, I.T. (Ed.), Principal ComponentAnalysis, Springer Series in Statistics. Springer, New York, pp. 78-110.
    [20] Kalaji H M, BaBa W , Gediga K , et al. Chlorophyllfluorescence as a tool for nutrient status identification in rapeseedplants[J]. Photosynthesis Research, 2017.
    [21] Kalaji H M, Oukarroum A, Alexandrov V, et al.Identification of nutrient deficiency in maize and tomato plants by in vivochlorophyll a fluorescence measurements[J]. Plant Physiology &Biochemistry, 2014, 81:16-25.
    [22] Kalaji, H.M., Carpentier, R., Allakhverdiev, S.L.,Bosa, K., 2012. Fluorescence parameters as early indicators of light stress inbarley. J. Photochem. Photobiol. B: Biol. 112, 1–6.
    [23] Keränen M, Aro EM, Tyystjärvi E, Nevalainen O(2003) Automatic plant identification with chlorophyll fluorescencefingerprinting. Precis Agric 4:53–67.
    [24] Kirova M, Ceppi G, Chernev P et al (2009)Using artificial neural networks for plant taxonomic determination based onchlorophyll fluorescence induction curves. Biotechnol Biotechnol Equip23:941–945.
    [25] Krüger, G.H.J., Tsimilli-Michael, M., Strasser,R.J.,1997. Light stress provokes plastic and elastic modifications instructureand function of photosystem II in camellia leaves. Physiol. Plant. 101,265–277.
    [26] Lazár, D., 2003. Chlorophyll a fluorescence riseinduced by high light illumination of dark-adapted plant tissue studied bymeans of a model of photosystem II and considering photosystem IIheterogeneity. J. Theor. Biol. 220, 469–503.
    [27] Legendre P, Legendre L (2012) Numerical ecology,3rd edn. Elsevier, Amsterdam.
    [28] Li, X., Zhang, L., 2015. Endophytic infectionalleviates Pb2+ stress effects on photosystem II functioning of Oryzasativa leaves. J. Hazard. Mater. 295, 79–85.
    [29] Lu, C.M., Zhang, J.H.,1999. Heat-induced multipleeffects on PSII in wheat Plants. J. Plant Physiol. 156, 259–265.
    [30] Mathur, S., Allakhverdiew, S.I., Jajoo,A.,2011.Analysis of high temperature stress on the dynamic of antenna size andreducing side heterogeneity of photosystem II in wheat leaves (Triticumaestivum). Biochim. Biophys. Acta 1807, 22–29.[31] Meinander, O., Somersalo, S., Holopainen, T.,Strasser, R.J., 1996. Scots pines after exposure to elevated ozone and carbondioxide probed by reflectance spectra and chlorophyll a fluorescencetransients. J. Plant Physiol. 148, 229–236.
    [32] Misra, A.N., Srivastava, A., Strasser, R.J., 2001.Utilization of fast chlorophyll a fluorescence technique in assessing thesalt/ion sensitivity of mung bean and Brassica seedlings. J. Plant Physiol.158, 1173–1181.
    [33] Nussbaum, S., Geissmann, M., Eggenberg, P.,Strasser, R.J., Fuhrer, J., 2001. Ozone sensitivity in herbaceous species asassessed by direct and modulated chlorophyll fluorescence techniques. J.Plant Physiol. 158, 757–766.
    [34] Oukarroum, A., Madidi, S. E., Schansker, G.,Strasser, R.J., 2007. Probing the responses of barley cultivars (Hordeumvulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress andre-watering. Environ. Exp. Bot 60, 438–446.
    [35] Oukarroum, A., Schansker, G., Strasser, R.J., 2009.Drought stress effects on photosystem I content and photosystem IIthermotolerance analyzed using Chl a fluorescence kinetics in barley varietiesdiffering in their drought tolerance. Physiol. Plant 137, 188–199.
    [36] Ouzounidou, G., Moustakas, M., Strasser, R.J.,1997. Sites of action of copper in the photosynthetic apparatus of maizeleaves: kinetics analysis of chlorophyll fluorescence, oxygen evolution,absorption changes and thermal dissipation as monitored by photoacousticsignals. Aust. J. Plant Physiol. 24, 81–90.
    [37] Pollastrini, M., Desotgiu, R., Camin, F., Ziller,L., Gerosa, G., Marzuoli, R., Bussotti, F., 2014. Severe drought eventsincrease the sensitivity to ozone on poplar clones. Environ. Exp. Bot.100, 94–104.
    [38] Pontes. D, Ontes, M., Rodriguez, R. and Santiago,E.F. Letter to The Editor. The energy flux theory celebrates 40 years: toward asystems biology concept? Photosynthetica, 2019, vol. 57, iss. 2, p.521-522.
    [39] Rivera-Becerril, F., Calantzis, C., Turnau, K.,Caussanel, J., Belimov, A. A., Gianinazzi,S., Strasser, R.J., Gianinazzi-Pearson,V., 2002. Cadmium accumulation and buffering of cadmium-induced stress byarbuscular mycorrhiza in three Pisum sativum L. genotypes. J. Exp.Bot. 53, 1177–1185.
    [40] Roccotiello, E., Manfredi, A., Drava, G., Minganti,V., Mariotti, M.G., Berta, G., Cornara, L., 2010. Zinc tolerance andaccumulation in the ferns Polypodium cambricum L. and Pteris vittataL. Ecotoxicol. Environ. Saf. 73, 1264–1271.
    [41] Samborska IA, Alexandrov V, Sieczko L et al (2014)Artificial neural networks and their application in biological and agriculturalresearch. Sigpost Open Access J Nano Photo Bio Sciences 2:14–30.
    [42] Schansker, G., Tóth, S.Z., Strasser, R.J., 2005.Methylviolegen and dibromothymoquinone treatments of pea leaves reveal the roleof photosystem I in the Chl a fluorescence rise OJIP. Biochim. Biophys. Acta1706, 250–261.
    [43] Sekhar, K.M., Rachapudi, V.S., Mudalkar, S., Reddy,A.R., 2014. Persistent stimulation of photosynthesis in short rotation coppicemulberry under elevated CO2 atmosphere. J. Photochem. Photobiol.B: Biol. 137, 21–30.
    [44] Srivastava, A., Guissé, B., Greppin, H., Strasser,R.J., 1997. Regulation of antenna structure and transport in photosystem II of Pisumsativum under elevated temperature probed by fast polyphasic chlorophyll afluorescence transient: OKJIP. Biochim. Biophys. Acta 1320, 95–106.
    [45] Srivastava, A., Jüttner, F., Strasser, R.J., 1998.Action of the allelochemical, fischerellin A, on photosystem II. Biochim.Biophys. Acta 1364, 326–336.
    [46] Srivastava, A., Strasser, R.J., Govindjee, 1995.Differential effects of dimethylbenzoquinone and dichlorobenzoquinone onchlorophyll fluorescence transient in spinach thylakoids. J. Photochem.Photobiol. B: Biol. 31, 163–169.
    [47] Stirbet A, Lazár D, Kromdijk J, Govindjee, 2018. Chlorophylla fluorescence induction: Can just a one-second measurement be used to quantifyabiotic stress responses? Photosynthetica 56: 86-104.
    [48] Strasser BJ, Strasser RJ (1995). Measuring fastfluorescence transients to address environmental questions: The JIP test. In:Mathis P (eds). Photosynthesis: from Light to Biosphere. Dordrecht: KAPPress, Vol 5: 977-980.
    [49] Strasser RJ, Srivastava A, Tsimilli-Michael M(2000). The fluorescence transient as a tool to characterize and screenphotosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds). ProbingPhotosynthesis: Mechanism, Regulationand Adaptation. London: Taylor andFrancis Press, 445–483.
    [50] Strasser RJ, Tsimill-Michael M, Srivastava A(2004). Analysis of the chlorophyll a fluorescence transient. In: PapageorgiouG, Govindjee(eds). Advances in Photosynthesis and Respiration.Netherlands: KAP Press, 1–42.
    [51] Strasser, B.J., 1997. Donor side capacity ofPhotosystem II probed by chlorophyll a fluorescence transients. Photosynth.Res. 52, 147–155.
    [52] Strasser, R.J., Tsimilli-Michael, M., Qiang, S.,Goltsev, V., 2010. Simultaneous in vivo recording of prompt and delayedfluorescence and 820-nm reflection changes during drying and after rehydrationof the resurrection plant Haberlea rhodopensis. Biochim. Biophys. Acta1313–1326.
    [53] Strauss, A.J., Krüger, G.H.J., Strasser, R.J., vanHeerden, P.D.R., 2006. Ranking of dark chilling tolerance in soybean genotypesprobed by the chlorophyll a fluorescence transient O-J-I-P. Environ. Exp.Bot. 56, 147–157.
    [54] Strauss, A.J., Krüger, G.H.J., Strasser, R.J., vanHeerden, P.D.R., 2007. The role of low soil temperature in the inhibition ofgrowth and PSII function during dark chilling in soybean genotypes ofcontrasting tolerance. Physiol. Plant 131, 89–105.
    [55] Strivastava A, Strasser RJ (1996). Stress andstress management of land plants during a regular day. J Plant Physiol,148: 445–455.
    [56] Susplugas, S., Srivastava, A., Strasser, R.J.,2000. Changes in the photosynthetic activities during several stages ofvegetative growth of Spirodela polyrhiza: effect of chromate. J. PlantPhysiol. 157, 503–512.
    [57] Tóth, S.Z., Schansker, G., Garab, G., Strasser,R.J., 2007. Photosynthetic electron transport activity in heat-treated barleyleaves: the role of internal alternative electron donors to photosystem II. Biochim.Biophys. Acta 1767, 295–305.
    [58] Tóth, S.Z., Schansker, G., Kissimon, J., Kovacs,L., Garab, G., Strasser, R.J., 2005b. Biophysical studies of photosystemII-related recovery processes after a heat pulse in barley seedlings (Hordeumvulgare L.). J. Plant Physiol. 162, 181–194.
    [59] Tóth, S.Z., Schansker, G., Strasser, R.J., 2005a.In intact leaves, the maximum fluorescence level (FM) isindependent of the redox state of the plastoquinone pool: a DCMU-inhibitionstudy. Biochim. Biophys. Acta 1708, 275–282.
    [60] Tsimilli-Michael, M., Eggenberg, P., Biro, B.,Köves-Pechy, K., Vörös, I., Strasser, R.J., 2000. Synergistic and antagonisticeffects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobiumnitrogen-fixers on the photosynthetic activity of alfalfa, probed by thepolyphasic chlorophyll a fluorescence transient O-J-I-P. Appl. Soil Ecol.15, 169–182.
    [61] Tyystjärvi E, Koski A, Keränen M, Nevalainen O(1999) The Kautsky curve is a built-in barcode. Biophys J 77:1159–1167.
    [62] van Heerden PDR, Strasser RJ, Krüger GHJ (2004).Reduction of dark chilling stress in N 2 -fixing soybean by nitrate asindicated by chlorophyll a fluorescence kinetics. Physiol Plant, 121:239–249.
    [63] van Heerden PDR, Tsimilli-Michael M, Krüger GHJ,Strasser RJ (2003). Dark chilling effects on soybean genotypes duringvegetative development: parallel studies of CO2 assimilation,chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. PhysiolPlant, 117: 476–491.
    [64] Xia, J.R., Li, Y.J., Zou, D.H., 2004. Effects ofsalinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescencemeasurements. Aquat. Bot. 80, 129–137.
    [65] Xiang, M.M., Chen, S.G., Wang, L.S., Dong, Z.Y.,Huang, J.H., Zhang, Y.X., Strasser, R.J., 2013. Effect of vulculic acidproduced by Nimbya alternantherae on the photosynthetic apparatus of Alternanthera.philoxeroides. Plant Physiol. Biochem 65, 81–88.
    [66] Yadavalli, V., Neelam, S., Rao, A.S.V.C., Reddy,A.R., Subramanyam, R., 2012. Differential degradation of photosystem I subunitsunder iron deficiency in rice. J. Plant Physiol. 169, 753–759.
    • 本文內PCA介紹部分內容及圖4a/b/c源自CSDN博主「qian99」原創文章

    • 原文鏈接:https://blog.csdn.net/qian99/java/article/details/105180110




    seo seo
    8x8永久海外华人免费,吴梦梦到粉丝家里实战91,枫与铃动漫在线看,美女扒开尿口给男人看的让

    <button id="e2s44"></button><button id="e2s44"><object id="e2s44"></object></button>
  • <li id="e2s44"><acronym id="e2s44"></acronym></li>

    <tbody id="e2s44"><pre id="e2s44"></pre></tbody>
    <button id="e2s44"><object id="e2s44"></object></button>